NAG Toolbox for MATLAB

f08le

1 Purpose

f08le reduces a real m by n band matrix to upper bidiagonal form.

2 Syntax

```
[ab, d, e, q, pt, c, info] = f08le(vect, m, kl, ku, ab, c, 'n', n, 'ncc', ncc)
```

3 Description

f08le reduces a real m by n band matrix to upper bidiagonal form B by an orthogonal transformation: $A = QBP^{T}$. The orthogonal matrices Q and P^{T} , of order m and n respectively, are determined as a product of Givens rotation matrices, and may be formed explicitly by the function if required. A matrix C may also be updated to give $\tilde{C} = Q^{T}C$.

The function uses a vectorizable form of the reduction.

4 References

None.

5 Parameters

5.1 Compulsory Input Parameters

1: **vect – string**

Indicates whether the matrices Q and/or P^{T} are generated.

vect = 'N'

Neither Q nor P^{T} is generated.

vect = 'Q'

Q is generated.

vect = 'P'

 P^{T} is generated.

vect = 'B'

Both Q and P^{T} are generated.

Constraint: $\mathbf{vect} = 'N', 'Q', 'P' \text{ or 'B'}.$

2: m - int32 scalar

m, the number of rows of the matrix A.

Constraint: $\mathbf{m} \geq 0$.

3: kl – int32 scalar

The number of subdiagonals, k_l , within the band of A.

Constraint: $\mathbf{kl} \geq 0$.

[NP3663/21] f08le.1

f08le NAG Toolbox Manual

4: ku – int32 scalar

The number of superdiagonals, k_u , within the band of A.

Constraint: $\mathbf{ku} \geq 0$.

5: ab(ldab,*) - double array

The first dimension of the array **ab** must be at least $\mathbf{kl} + \mathbf{ku} + 1$

The second dimension of the array must be at least $max(1, \mathbf{n})$

The original m by n band matrix A.

The matrix is stored in rows 1 to ++1, more precisely, the element A_{ij} must be stored in

$$\mathbf{ab}(+1+i-j,j)$$
 for $\max(1j-) \le i \le \min(mj+)$.

6: $c(ldc_*) - double array$

The first dimension, ldc, of the array c must satisfy

if
$$ncc > 0$$
, $ldc \ge max(1, m)$; if $ncc = 0$, $ldc \ge 1$.

The second dimension of the array must be at least max(1, ncc)

An m by n_C matrix C.

5.2 Optional Input Parameters

1: n - int32 scalar

Default: The second dimension of the array ab.

n, the number of columns of the matrix A.

Constraint: $\mathbf{n} > 0$.

2: ncc - int32 scalar

Default: The second dimension of the array c.

 n_C , the number of columns of the matrix C.

Constraint: $ncc \ge 0$.

5.3 Input Parameters Omitted from the MATLAB Interface

ldab, ldq, ldpt, ldc, work

5.4 Output Parameters

1: ab(ldab,*) - double array

The first dimension of the array **ab** must be at least $\mathbf{kl} + \mathbf{ku} + 1$

The second dimension of the array must be at least $max(1, \mathbf{n})$

ab contains values generated during the reduction.

2: d(*) – double array

Note: the dimension of the array **d** must be at least $max(1, min(\mathbf{m}, \mathbf{n}))$.

The diagonal elements of the bidiagonal matrix B.

f08le.2 [NP3663/21]

3: e(*) – double array

Note: the dimension of the array **e** must be at least $max(1, min(\mathbf{m}, \mathbf{n}) - 1)$.

The superdiagonal elements of the bidiagonal matrix B.

4: q(ldq,*) - double array

The first dimension, **ldq**, of the array **q** must satisfy

if
$$vect = 'Q'$$
 or 'B', $ldq \ge max(1, m)$; $ldq \ge 1$ otherwise.

The second dimension of the array must be at least $max(1, \mathbf{m})$ if $\mathbf{vect} = 'Q'$ or 'B', and at least 1 otherwise

If $\mathbf{vect} = 'Q'$ or 'B', contains the m by m orthogonal matrix Q.

If $\mathbf{vect} = 'N'$ or 'P', \mathbf{q} is not referenced.

5: **pt(ldpt,*)** – **double array**

The first dimension, ldpt, of the array pt must satisfy

if
$$vect = 'P'$$
 or 'B', $ldpt \ge max(1, n)$; $ldpt \ge 1$ otherwise.

The second dimension of the array must be at least $max(1, \mathbf{n})$ if $\mathbf{vect} = 'P'$ or 'B', and at least 1 otherwise

The *n* by *n* orthogonal matrix P^{T} , if **vect** = 'P' or 'B'. If **vect** = 'N' or 'Q', **pt** is not referenced.

6: c(ldc,*) - double array

The first dimension, **ldc**, of the array **c** must satisfy

if
$$ncc > 0$$
, $ldc \ge max(1, m)$; if $ncc = 0$, $ldc \ge 1$.

The second dimension of the array must be at least max(1, ncc)

c contains $Q^{T}C$. If $\mathbf{ncc} = 0$, **c** is not referenced.

7: info – int32 scalar

info = 0 unless the function detects an error (see Section 6).

6 Error Indicators and Warnings

info = -i

If info = -i, parameter i had an illegal value on entry. The parameters are numbered as follows:

1: vect, 2: m, 3: n, 4: ncc, 5: kl, 6: ku, 7: ab, 8: ldab, 9: d, 10: e, 11: q, 12: ldq, 13: pt, 14: ldpt, 15: c, 16: ldc, 17: work, 18: info.

It is possible that **info** refers to a parameter that is omitted from the MATLAB interface. This usually indicates that an error in one of the other input parameters has caused an incorrect value to be inferred.

7 Accuracy

The computed bidiagonal form B satisfies $QBP^{T} = A + E$, where

$$||E||_2 \leq c(n)\epsilon ||A||_2$$

c(n) is a modestly increasing function of n, and ϵ is the machine precision.

[NP3663/21] f08le.3

f08le NAG Toolbox Manual

The elements of B themselves may be sensitive to small perturbations in A or to rounding errors in the computation, but this does not affect the stability of the singular values and vectors.

The computed matrix Q differs from an exactly orthogonal matrix by a matrix F such that

$$||F||_2 = O(\epsilon).$$

A similar statement holds for the computed matrix P^{T} .

8 Further Comments

The total number of real floating-point operations is approximately the sum of:

```
6n^2k, if \mathbf{vect} = '\mathbf{N}' and \mathbf{ncc} = 0, and 3n^2n_C(k-1)/k, if C is updated, and 3n^3(k-1)/k, if either Q or P^{\mathrm{T}} is generated (double this if both), where k = k_l + k_u, assuming n \gg k. For this section we assumed that m = n.
```

The complex analogue of this function is f08ls.

9 Example

```
vect = 'N';
m = int32(6);
k1 = int32(2);
ku = int32(1);
ab = [0, -1.28, -0.31, -0.35;

-0.57, 1.08, 0.4, 0.08;

-1.93, 0.24, -0.66, -2.13;

2.3, 0.64, 0.15, 0.5];
[abOut, d, e, q, pt, cOut, info] = f08le(vect, m, kl, ku, ab, c)
abOut =
          0
                 0.6206
                            -1.2353
                                        -1.1240
     3.0561
                 1.5259
                           0.9690
                                        1.5685
    3.0025
                1.3713
                           0.9687
                                        -1.0654
                1.3371
                          0.9687
    2.3000
                                        0.0371
d =
     3.0561
     1.5259
    0.9690
     1.5685
    0.6206
   -1.2353
    -1.1240
      0
cOut =
info =
             0
```

f08le.4 (last) [NP3663/21]